The yeast Geotrichum candidum encodes functional lytic polysaccharide monooxygenases
نویسندگان
چکیده
BACKGROUND Lytic polysaccharide monooxygenases (LPMOs) are a class of powerful oxidative enzymes that have revolutionized our understanding of lignocellulose degradation. Fungal LPMOs of the AA9 family target cellulose and hemicelluloses. AA9 LPMO-coding genes have been identified across a wide range of fungal saprotrophs (Ascomycotina, Basidiomycotina, etc.), but so far they have not been found in more basal lineages. Recent genome analysis of the yeast Geotrichum candidum (Saccharomycotina) revealed the presence of several LPMO genes, which belong to the AA9 family. RESULTS In this study, three AA9 LPMOs from G. candidum were successfully produced and biochemically characterized. The use of native signal peptides was well suited to ensure correct processing and high recombinant production of GcLPMO9A, GcLPMO9B, and GcLPMO9C in Pichia pastoris. We show that GcLPMO9A and GcLPMO9B were both active on cellulose and xyloglucan, releasing a mixture of soluble C1- and C4-oxidized oligosaccharides from cellulose. All three enzymes disrupted cellulose fibers and significantly improved the saccharification of pretreated lignocellulosic biomass upon addition to a commercial cellulase cocktail. CONCLUSIONS The unique enzymatic arsenal of G. candidum compared to other yeasts could be beneficial for plant cell wall decomposition in a saprophytic or pathogenic context. From a biotechnological point of view, G. candidum LPMOs are promising candidates to further enhance enzyme cocktails used in biorefineries such as consolidated bioprocessing.
منابع مشابه
Renal fungal bezoar owing to Geotrichum candidum
Geotrichum candidum is yeast like fungi that cause infections in immunocompromised patients. We report a case of renal fungal ball with Geotrichum candidum in a 27 yr. old women post-partum. This case to our knowledge is the first case of renal fungal bezoar due to Geotrichum candidum reported in India.
متن کاملBiodegradation of olive mill wastewater by Trichosporon cutaneum and Geotrichum candidum.
Olive oil production generates large volumes of wastewater. These wastewaters are characterised by high chemical oxygen demand (COD), high content of microbial growth-inhibiting compounds such as phenolic compounds and tannins, and dark colour. The aim of this study was to investigate biodegradation of olive mill wastewater (OMW) by yeasts Trichosporon cutaneum and Geotrichum candidum. The yeas...
متن کاملLipase Production Using Microorganisms from Different Agro-Industrial By- Products
This work is focused on the study of different microorganisms to obtain a high level of lipase. It was selected 6 different microorganisms: Geotrichum candidum NRRLY-552, Geotrichum sp., Fusarium oxysporum and three wild yeasts from Brazil rainforest. Fermentation carried out using agro industrial by-products like corn steep liquor and protein hydrolysed in shaken flasks under different conditi...
متن کاملDraft Genome Sequence of Geotrichum candidum Strain 3C
We report here the draft genome sequence of Geotrichum candidum strain 3C, which is a filamentous yeast-like fungus that holds great promise for biotechnology. The genome was sequenced using Ion Torrent and 454 platforms. The estimated genome size was 41.4 Mb, and 14,579 protein-coding genes were predicted ab initio.
متن کاملEvidence for distinct L-methionine catabolic pathways in the yeast Geotrichum candidum and the bacterium Brevibacterium linens.
Tracing experiments were carried out to identify volatile and nonvolatile L-methionine degradation intermediates and end products in the yeast Geotrichum candidum and in the bacterium Brevibacterium linens, both of which are present in the surface flora of certain soft cheeses and contribute to the ripening reactions. Since the acid-sensitive bacterium B. linens is known to produce larger amoun...
متن کامل